Propagation of Surface Plasmon Polaritons in Thin Films of Topological Insulators

YURY DESHKO, ZHIYI CHEN, LIA KRUSIN-ELBAUM, VINOD MENON, City College of New York – CUNY, JACOB TREVINO, Advanced Science Research Center – CUNY, ALEXANDER KHANIKAEV, Queens College – CUNY — Surface Plasmon Polaritons (SPP) are coupled collective oscillations of surface charges and electromagnetic waves confined to the interface between a metal and a dielectric. Three dimensional topological insulators (TI), such as Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$ are narrow band-gap semiconductors in the bulk while having conducting surface with the linear energy dispersion for the surface electronics states. Similar to double-layered graphene a thin single film of TI supports two SPP modes in the far-infrared range. We study the propagation of these modes in thin films of Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$. The dispersion curves and the propagation lengths are estimated for all three materials. The explanation of the discrepancy between the theory [1] and the first experimental observation of standing wave SPPs in Bi$_2$Se$_3$ [2] is proposed. Finally, the possibilities of tuning the SPP dispersion relations in thin films of TI are discussed.

1Supported by NSF DMR-1420634 and DOD-W911NF-13-1-0159

Yury Deshko
City College of New York – CUNY

Date submitted: 06 Nov 2015