Abstract Submitted for the MAR16 Meeting of The American Physical Society

Thickness Dependence of Electrical and Structural Properties of Tensile Strained Calcium Manganese Oxide Thin Films¹ CACIE HART, ZOEY WARECKI², ADEEL CHAUDHRY, NATALIE FERRONE, DAVID HOUS-TON, BRIDGET LAWSON, GRACE YONG, RAJESWARI KOLAGANI, Towson University — We have investigated the properties of $CaMnO_{3-\delta}$ thin films epitaxially grown by pulsed laser deposition on lattice mismatched substrates, (100)LaAlO₃ and (100)SrTiO₃, leading to a tensile strain of $\sim 4\%$ and 1.5% respectively. For our films these substrates, thickness dependence of the properties is characteristically different from what has been previously observed in thin films of hole-doped manganites. We observe that the resistivity decreases significantly as the film thickness decreases. The decrease in resistivity is more pronounced in the films on (100)SrTiO₃ with the larger lattice mismatch, the resistivity of the thinnest films being about 3 orders of magnitude lower than the of bulk CaMnO₃. Thickness dependence of the lattice constants also show deviations from the behavior expected from strain relaxation. These results suggest a coupling between tensile strain and oxygen deficiency consistent with predictions from models based on density functional theory calculations. Our results are relevant for potential catalytic applications of CaMnO_{3- δ} thin films.

¹NSF Grant ECCS112856 and Seed Funding from the School of Emerging Technologies

²Now at University of Maryland, College Park

Cacie Hart Towson University

Date submitted: 06 Nov 2015 Electronic form version 1.4