Theory of electronic and magnetic properties of weak antiferromagnetic TiAu

WEN FONG GOH, WARREN PICKETT, Univ of California - Davis — To date, only a few itinerant magnetic compounds have been found, viz. ZrZn$_2$, TiBe$_2$ and Sr$_3$In, all comprised of nonmagnetic elements. TiAu, a newly synthesized itinerant weak antiferromagnet, orders antiferromagnetically below 36 K. Neutron diffraction reveals an ordered local moment of only 0.15 μ_B/Ti at a wave vector $Q=(0,\pi/b,0)$. Hole doping, viz. $\text{Ti}_1-x\text{Sc}_x\text{Au}$, causes the magnetic moment to disappear at a quantum critical point $x_{\text{Sc}}=0.13$. We present results of an extensive study of the electronic and magnetic properties of TiAu. DFT calculations reveal van Hove singularities at $(0,0.45\pi/b,0.49\pi/c)$, 4 meV above the Fermi level. Several types of analysis will be discussed: fixed spin moment studies and Stoner enhancement; magnetic energies; magnetism versus doping; Fermi surface nesting; corrections for spin fluctuations.

1Supported by Grant NSF DMREF DMR 1534719