Large-scale simulations of spin-density-wave order in frustrated lattices KIPTON BARROS, CRISTIAN BATISTA, Los Alamos National Laboratory, GIA-WEI CHERN, University of Virginia — We investigate spin-density-wave (SDW) phases within a generalized mean-field approximation. This approach incorporates the thermal fluctuations of SDW order and the development of short-range order above magnetic ordering temperatures T_c. Using a new Langevin dynamics method, we study mesoscale structures associated with triple-Q SDW states that are induced by Fermi surface nesting in triangular and kagome lattice Hubbard models. The core of our linear-scaling Langevin dynamics simulations is an efficient stochastic kernel polynomial method for computing the electron density matrix. We also investigate exotic phases above T_c arising from preformed magnetic moments.

Gia-Wei Chern
University of Virginia

Date submitted: 06 Nov 2015

Electronic form version 1.4