Strain coupling of a mechanical resonator to a single quantum emitter in diamond

KENNETH LEE, DONGHUN LEE, PREETI OVARTCHAIYAPONG, ANIA JAYICH, University of California Santa Barbara

Hybrid quantum devices are central to the advancement of several emerging quantum technologies, including quantum information science and quantum-assisted sensing. Here, we present a hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically modulate the energy and polarization dependence of the optical transitions of a single nitrogen-vacancy defect center in diamond. With mechanical driving, we observe optomechanical couplings exceeding 10 GHz. Through resonant excitation spectroscopy, we quantitatively characterize the intrinsic strain environment of a single defect, and use this optomechanical coupling to tune the zero-phonon line of the defect. Through stroboscopic measurements, we show that we are able to match the frequency and polarization dependence of the optical zero-phonon lines of two separate NV centers. The experiments demonstrated here mark an important step toward realizing a monolithic hybrid quantum device capable of realizing and probing the dynamics of non-classical states of mechanical resonators, spin-systems, and photons.

1 This work was supported with grants from the AFOSR, NSF and DARPA