Reversibility in Quantum Models of Stochastic Processes

DAVID GIER, University of Kansas, JAMES CRUTCHFIELD, JOHN MAHONEY, RYAN JAMES, University of California at Davis — Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ε-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ε-machine for a given process characterize the structure, memory and patterns of that process. However ε-machines are often not ideal because their statistical complexity (C_μ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (C_q) obeys the relation $C_\mu \geq C_q \geq E$. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric — a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

David Gier
University of Kansas

Date submitted: 06 Nov 2015

Electronic form version 1.4