BKT physics in trapped 2D Bose and Fermi gases
MARKUS HOLZMANN, LPMMC, CNRS and UJF, Grenoble

I will discuss superfluid and spatial coherence properties of two-dimensional trapped Fermi gases in the BEC-BCS crossover regime [1]. On the bosonic side, experimental data are in quantitative agreement with path-integral quantum Monte Carlo calculations of point like molecules up to large values of the interaction. Algebraic correlations in the first-order correlation function characterize the phase below the Kosterlitz-Thouless transition temperature. Whereas the inhomogeneous trapping potential introduces important quantitative modifications, the effective exponent of the power-law decay at the superfluid transition remains approximately constant for all interaction strengths in the BEC-BCS crossover regime.