Dynamics and Instabilities of an overdamped active nematic liquid crystal1 ELIAS PUTZIG, APARNA BASKARAN, Brandeis University — Active nematics have been studied extensively in the context of suspensions of active particles, with a Stokes equation describing the flow of the surrounding fluid. Here we will present a continuum model of an overdamped (often termed 'dry') active nematic, where activity enters through self-induced flows. These flows represent the ability of the internal forces to convect, shear, or rotate the nematic order. The self-induced shear gives rise to an instability in the homogeneous ordered state which is analogous to that seen in active suspensions. The self-induced rotation gives rise to a new instability. A phase diagram from this model will be presented, and the phenomenology will be compared with what is seen in experimental and simulated active systems.

1We would like to acknowledge grant support through NSF (NSF-DMR-1149266), (DMR-0820492), (NIH-5T32EB009419) and IGERT (DGE-1068620).