Effect of charge density in chain extension reactions involving complexes of 4, 4'-diaminodiphenylmethane and various alkali metal salts

SUBRAJEET DESHMUKH, KATHERINE CARRASQUILLO, FANG CHANG TSAI, LINA WU, SHAW LING HSU, University of Massachusetts Amherst, UNIVERSITY OF MASSACHUSETTS AMHERST TEAM — Controlling the reaction of methylene diphenyl diisocyanate (MDI)-terminated polyester prepolymer and 4, 4'-diaminodiphenylmethane (MDA) is extremely important in many large scale applications. The ion-diamine complex has the advantage of blocking the instantaneous reaction between the diamine and isocyanate from taking place until it is released at elevated temperatures. We synthesized complexes of MDA with various alkali metal salts. These complexes create a barrier between the diamine and isocyanate thus preventing the premature reaction. We compared the complexes in terms of their dissociation and the subsequent curing with the prepolymer. Charge density had a tremendous effect. DSC showed that Na complexes dissociated at a lower temperature and needed less energy to dissociate than the Li complexes. The effect of change in cation on complex dissociation was more pronounced compared to the change in anion. Also, the ionic liquid introduced greatly altered the dissociation behavior. Temperature and time resolved IR spectroscopy was used to monitor the urea and NH band. By DSC and IR, we showed that NaCl complex is best suited for the curing of prepolymer with regards to curing temperature and energy.

Subrajeet Deshmukh
University of Massachusetts Amherst

Date submitted: 06 Nov 2015
Electronic form version 1.4