Abstract Submitted for the MAR16 Meeting of The American Physical Society

⁹³Nb NMR investigation of vortex- glass transition in layered NbSe₂¹ DOUGLAS WILSON, GARIMA SARASWAT, National High Magnetic Field Laboratory, PARASHARAM SHIRAGE, Indian Institute of Technology, PHILIP KUHNS, MICHAEL J. R. HOCH, ARNEIL REYES, National High Magnetic Field Laboratory — We report a detailed low temperature investigation of vortex glass transition in layered superconducting compound $NbSe_2$ using ⁹³Nb NMR at fields below H_{c2} . Preliminary measurements show that spin-lattice relaxation rate $1/T_1$ demonstrates a classic Korringa behavior $1/T_1\ \tilde{}\ T$ above the superconducting transition T_c , consistent with previous measurements on this compound. However, for field H perpendicular to the layers, we observed that $1/T_1$ exhibits an anomalous plateau between T_c (H = 0) and $T_c(H)$ and a suppression of the superconducting enhancement expected below T_c . Instead, a power law behavior, $1/T_1 \ T^{1.2}$ below T_c down to 360mK was observed which suggests a strong anisotropy in the low energy excitations. However, the possibility of enhancement in $1/T_1$ due to vortex fluctuations which competes with electronic mechanisms cannot be excluded. The implications of these results with regards to vortex-glass transition will be discussed.

¹This work was performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida.

Arneil Reyes National High Magnetic Field Laboratory

Date submitted: 06 Nov 2015

Electronic form version 1.4