Chromium Doping of the Topological Insulator $\text{Bi}_{1.5}\text{Sb}_{0.5}\text{Te}_{1.7}\text{Se}_{1.3}$

DANIEL DOUGHERTY, ANDREW HEWITT, Department of Physics North Carolina State University, RAJ KUMAR, Department of Materials Science and Engineering North Carolina State University, JONATHAN BOLTERS DorF, PAUL MAGGARD, Department of Chemistry North Carolina State University, FRANK HUNTE, Department of Materials Science and Engineering North Carolina State University — A major materials science challenge is to minimize bulk conductivity in topological insulators so that topological surface state physics can be cleanly accessed. One solution to this problem has been the development of quaternary bismuth chalcogenides $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$ (BSTS) which can be tuned to place the mid-gap Fermi level near the Dirac point associated with the topological surface state. This is ideal for accessing interesting topological physics including the exotic magnetoelectric effects associated with breaking time reversal symmetry. With this goal in mind, we have grown Cr-doped crystals of $\text{Bi}_{1.5}\text{Sb}_{0.5}\text{Te}_{1.7}\text{Se}_{1.3}$ to assess the impact of magnetic dopants on the electronic and magnetic properties of this material. For 4 percent Cr doping we find electronic structure modifications measured by angle-resolved ultraviolet photoelectron spectroscopy and observe magnetic ordering below 50 K in bulk magnetometry. Higher doping levels show evidence of phase segregation.

Daniel Dougherty
North Carolina State University

Date submitted: 06 Nov 2015