Geometrical Effects in Noise Spectra of Superconducting Flux Qubits

ANDRE PETUKHOV, NASA Ames Research Center, Moffett Field, California, VADIM SMELYANSKIY, Google Inc, Venice, California, JOHN MARTINIS, University of California, Santa Barbara and Google Inc, Santa Barbara, California

— We present theoretical study of geometrical effects related to spin diffusion in superconducting flux qubits. We adopt a model of a long superconducting wire surrounded by a thin oxide layer with spins distributed uniformly over cross-sectional area of the oxide layer. Using a continuous transformation from a round cylinder to a flat wire strip, we demonstrate that the noise spectral density tends to a power law $S(\omega) \propto (\omega/\Gamma)^{-s}$ with $s \geq 3/4$, approaching $s = 3/4$ for very thin wires. The ω^{-s} dependence is valid in a broad frequency range above $\omega \gtrsim \Gamma$ stretching up to four orders of magnitude in units of characteristic diffusion decay rate $\Gamma \sim 1 - 10^2$ Hz. The effect is highly sensitive to a cross-sectional aspect ratio of a thin wire thus revealing its geometrical origin. We substantiate our findings by detailed comparison with available experimental data and conclude that $3/4$ power law distinguishes spin diffusion flux noise from generic “$1/f$” family.

1Supported by the AFRL Information Directorate under grant F4HBKC4162G001