Role of mutation on fibril formation in small peptides by REMD
FARBOD MAHMoudINOBAR1, CRISTIANO DIAS2, New Jersey Inst of Tech —
Amyloid fibrils are now recognized as a common form of protein structure. They
have wide implications for neurological diseases and entities involved in the survival
of living organisms, e.g., silkmoth eggshells. Biological functions of these entities
are often related to the superior mechanical strength of fibrils that persists over a
broad range of chemical and thermal conditions desirable for various biotechnolog-
ical applications, e.g., to encapsulate drugs. Mechanical properties of fibrils was
shown to depend strongly on the amino acid sequence of its constituent peptides
whereby bending rigidities can vary by two orders of magnitude. Therefore, the
rational design of new fibril-prone peptides with tailored properties depends on our
understanding of the relation between amino acid sequence and its propensity to
fibrillize. In this presentation I will show results from extensive Replica Exchange
Molecular Dynamics (REMD) simulations of a 12-residue peptide containing the
fibril-prone motif KFFE and its mutants. Simulations are performed on monomers,
dimers, and tetramers. I will discuss effects of side chain packing, hydrophobicity,
charges and beta-sheet propensity on fibril formation.

1Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA
2Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA