Abstract Submitted for the MAR16 Meeting of The American Physical Society

Structure-magnetism correlation induced by Mn substitution in bilayered perovskite $Sr_3(Ru_{1-x}Mn_x)_2O_7^{-1}$ QIANG ZHANG, Louisiana State Univ - Baton Rouge, FENG YE, SONGXUE CHI, Oak Ridge National Laboratory, DALGIS MESA, Louisiana State Univ - Baton Rouge, WEI TIAN, Oak Ridge National Laboratory, RONGYING JIN, WARD PLUMMER, JIANDI ZHANG, Louisiana State Univ - Baton Rouge — Elastic neutron scattering technique was employed to investigate the effect of Mn substitution on the structure, magnetism and their correlation in $Sr_3(Ru_{1-x}Mn_x)_2O_7(x=6\%, 12\% \text{ and } 16\%)$ crystals. While parent compound Sr₃Ru₂O₇ is paramagnetic, a small amount of Mn substitution induces an E-type antiferromagnetic order. With the increase of Mn substitution from 6 % to 16%, the ordered moment at Ru/Mn site increases significantly with an enhanced T_N from 20 K for x=6 % to 80 K for x= 16%, and the in-plane magnetic correlation lengths increase to achieve the maximum for x=16% as indicated by the resolution-limited linewidth of the H scans through $\mathbf{Q}_{AFM} = (0.5, 0, 0)$. Accompanied by the enhancement of T_N , the $(Ru/Mn)O_6$ octahedron rotation is found to be suppressed simultaneously, suggesting a correlation between (Ru/Mn)O₆ octahedron rotation and magnetism due to Mn substitution. Our findings indicate that Mn substitution on Ru in Sr₃Ru₂O₇ has a significant effect on the microscopic structure and magnetism as well as the correlations between them.

¹This work is supported by the U.S. Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents.

Qiang Zhang Louisiana State Univ - Baton Rouge

Date submitted: 06 Nov 2015 Electronic form version 1.4