Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

The Knight shift anomaly in the disordered periodic Anderson model
RAIMUNDO DOS SANTOS, NATANAEL COSTA, THEREZA PAIVA,
Universidade Federal do Rio de Janeiro, NICHOLAS CURRO, RICHARD SCALET-
TAR, UC Davis — In some materials, the coherence temperature T^* signals the
regime in which one has a heavy-electron fluid and ‘dissolved’ local moments. An
experimental signature of T^* is provided by the Knight shift anomaly in NMR mea-
surements. Further, the contribution of the heavy-electron fluid to the Knight shift,
K_{HF}, displays universal character over a wide range of temperatures. An important
probe of the physical mechanisms at play is the random substitution of say, La for
Ce in CeRhIn$_5$: this amounts to removing local moments at random sites, and one
may wonder whether these universal features are sensitive to the presence of disor-
der. The Periodic Anderson Model (PAM) captures many aspects of heavy-fermion
materials, so here we consider the two-dimensional PAM with a fraction x of the
f-sites removed at random. Through Determinant Quantum Monte Carlo simulations
we find that universality of K_{HF} persists even in the presence of disorder, which, in
turn, allows us to establish that T^* decreases monotonically with x, in agreement
with available experimental data. Our simulations also shed light into the low tem-
perature behavior of the disordered PAM at low temperatures: the spin liquid phase
of the local moments is suppressed upon dilution.