Abstract Submitted for the MAR16 Meeting of The American Physical Society

Chiral phase of a simple two-dimensional spin-1 quantum magnet¹ OLEG STARYKH, University of Utah, ZHENTAO WANG, Rice University, CRISTIAN D. BATISTA, T-Division and CNLS, Los Alamos National Laboratory — We investigate the evolution of the ground state of a simple spin-1 antiferromagnet with easy-axis single-ion anisotropy $D(S^z)^2$, with D < 0, on a two-dimensional triangular lattice. The ground state changes from a quantum paramagnet one, at sufficiently large |D|, to a magnetically ordered 120° one at small $D \sim 0$. Besides breaking the continuous U(1) symmetry of global spin rotations along the z-axis, this non-collinear ordering also breaks the discrete Z_2 chiral symmetry, which raises the possibility of an intermediate chiral spin liquid state, spontaneously breaking spatial inversion and mirror symmetries. We show that this interesting novel state indeed appears as a result of the condensation of bound $\langle S_n^+ S_m^- - S_n^- S_m^+ \rangle$ pairs. The resulting Ising-like nematic state supports a regular pattern of spin currents on the bonds of the triangular lattice. It represents quantum analogue of the classical chiral spin liquid proposed by Villain in 1977.

¹Supported by NSF DMR-1507054

Oleg Starykh University of Utah

Date submitted: 06 Nov 2015

Electronic form version 1.4