Structural and electronic response via oxygen vacancy control in
\textbf{SrFeO}_3 \textbf{heterostructures} ALEX KRICK, EUN JU MOON, AMANDA HUON,
STEVEN MAY, Drexel University — The electronic and structural properties of
complex perovskite oxide thin films are often directly influenced by their oxygen va-
cancy concentration. Here, we investigate epitaxial films of SrFeO$_3$, which exhibits
a variety of structural and electronic phases as a function of oxygen content. The
ability to control these functional properties via temperature or external fields is
not present in conventional semiconductors and is attractive from an application
perspective. As-grown films are oxidized using a post-growth anneal in dilute ozone,
yielding metallic behavior consistent with bulk SrFeO$_3$. X-ray diffraction and tem-
perature dependent resistivity collected at different stages of oxidation and reduction
reveal minute structural transformations that yield large changes in electronic be-
havior due to oxygen loss.

Alex Krick
Drexel University

Date submitted: 24 Nov 2015