Spin Seebeck measurements of current-induced switching in YIG

JASON BARTELL, COLIN JERMAIN, SRIHARSHA ARADHYA, Cornell University, HAILONG WANG, The Ohio State University, ROBERT BUHRMAN, Cornell University, FENGYUAN YANG, The Ohio State University, DANIEL RALPH, GREGORY FUCHS, Cornell University — Quantifying spin torques generated at the interface between a normal metal (NM) and a ferromagnetic insulator (FI) is an important step in understanding the spin hall effect without charge transport. Measuring magnetization in NM/FI devices is challenging, however, because both magnetoresistive and magneto-optical signals are tiny in thin-film bilayers. We show that a promising alternative measurement approach is the use of picosecond thermal gradients to study spin torques in Pt/Yttrium Iron Garnet (YIG) bilayers. Recently, we demonstrated the application of heat to stroboscopically transduce a local magnetic moment into an electrical signal via the time resolved anomalous Nernst effect (TRANE) in ferromagnetic metals [1]. Using a similar geometry the spin Seebeck effect of YIG combined with the inverse spin Hall effect of Pt enables measurement of local magnetization [2]. Here we describe our study using this technique to study current-induced switching in Pt/YIG with sub-10 nm thick YIG films. [1] Bartell et al., Nat. Commun. 6, 8460 (2015). [2] Weiler et al., Phys. Rev. Lett. 108, 106602 (2012).

1We acknowledge support from AFOSR