Abstract Submitted for the MAR16 Meeting of The American Physical Society

Detecting an in-plane rotation of magnetization in GdFeCo films¹ FARZANEH HOVEYDA, SERBAN SMADICI, University of Louisville — It is often important to distinguish between magnetization reversal by coherent rotation in different planes and domain wall motion. Magnetization curves were measured at different temperatures with magneto-optical Kerr Effect in longitudinal (L-MOKE) and polar (P-MOKE) geometries on sputter-deposited $Gd_xFe_yCo_{1-x-y}$ (GFC) films of variable thickness. Depending on the probed region, the L-MOKE signal measured with decreasing external field H_{ext} was found to be lower than the signal observed with increasing H_{ext} (negative remanence magnetization). We show that this is due to a contribution to the signal of M_{\perp} , the magnetization component perpendicular to the scattering plane. This identifies the type of reversal in these GFC films as in-plane coherent rotation of magnetization. M_{\perp} is also proportional to the torque. Azimuthal measurements on Co_2FeAl samples showed a regular variation

of the MOKE signal, in one possible application of these observations to torque

¹Work supported by the University of Louisville Research Foundation.

measurements.

Farzaneh Hoveyda University of Louisville

Date submitted: 06 Nov 2015 Electronic form version 1.4