Superconductivity and disorder in the potential topological superconductor (Sn,In)Te

MATTHEW SMYLIE, Univ of Notre Dame, BING SHEN, HELMUT CLAUS, ALEXEY SNEZHKO, ULRICH WELP, WAI-KWONG KWOK, Argonne National Lab, MORTEN ESKILDSEN, ELIZABETH DE WAARD, Univ of Notre Dame, MICHAEL SUSNER, ATHENA SEFAT, Oak Ridge National Lab — In-doped SnTe has been proposed as a candidate topological superconductor. It has been suggested that the superconducting critical temperature (Tc) is strongly enhanced with impurity scattering in this material, with the pairing mechanism perhaps changing with doping. To access information on the pairing symmetry of the superconducting order parameter, ultra-sensitive magnetic field penetration measurements have been conducted by means of a Tunnel-Diode-Oscillator (TDO) technique. Particle irradiation with low MeV protons was used as a controllable source of disorder, but no enhancement of Tc was observed in cubic-phase material as scattering increased. Detailed characterization measurements and analysis were performed before and after irradiation of the samples.

1Tunnel diode oscillator and magnetization measurements were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Matthew Smylie
Univ of Notre Dame