Theory of mode coupling in spin torque oscillators coupled to a thermal bath of magnons

YAN ZHOU1, University of Hong Kong, SHULEI ZHANG2, University of Missouri, DONG LI, Hong Kong Baptist University, OLLE HEINONEN3, Argonne National Lab and Northwestern University — Recently, numerous experimental investigations have shown that the dynamics of a single spin torque oscillator (STO) exhibits complex behavior stemming from interactions between two or more modes of the oscillator. Examples are the observed mode-hopping and mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In this work, we rigorously derive such a theory starting with the generalized Landau-Lifshitz-Gilbert equation in the presence of the current-driven spin transfer torques. We will first show, in general, that how a linear mode coupling would arise through the coupling of the system to a thermal bath of magnons, which implies that the manifold of orbits and fixed points may shift with temperature. We then apply our theory to two experimentally interesting systems: 1) a STO patterned into nano-pillar with circular or elliptical cross-sections and 2) a nano-contact STO. For both cases, we found that in order to get mode coupling, it would be necessary to have either a finite in-plane component of the external field or an Oersted field. We will also discuss the temperature dependence of the linear mode coupling.

1Y. Zhou acknowledges the support by the Seed Funding Program for Basic Research from the University of Hong Kong, and University Grants Committee of Hong Kong (Contract No. AoE/P-04/08).

2S. Zhang was supported by NSF Grants DMR-1406568.

3Work by O.Heinonen was supported by the U.S. Department of Energy.

Shulei Zhang
University of Missouri

Date submitted: 06 Nov 2015

Electronic form version 1.4