Abstract Submitted for the MAR16 Meeting of The American Physical Society

First measurements of charge carrier density and mobility of insitu enriched ²⁸Si. A. N. RAMANAYAKA, Joint Quantum Institute, National Institute of Standards and Technology, K. J. DWYER, HYUN-SOO KIM, University of Maryland, M. D. STEWART, JR., J. M. POMEROY, National Institute of Standards and Technology — Magnetotransport in top gated Hall bar devices is investigated to characterize the electrical properties of in-situ enriched ²⁸Si. Isotopically enriched ²⁸Si is an ideal candidate for quantum information processing devices as the elimination of unpaired nuclear spins improves the fidelity of the quantum information. Using mass filtered ion beam deposition we, in-situ, enrich and deposit epitaxial ²⁸Si, achieving several orders of magnitude better enrichment compared to other techniques. In order to explore the electrical properties and optimize the growth conditions of in-situ enriched ²⁸Si we perform magnetotransport measurements on top gated Hall bar devices at temperatures ranging from 300 K to cryogenic temperatures and at moderate magnetic fields. Here, we report on the charge carrier density and mobility extracted from such experiments, and will be compared among different growth conditions of in-situ enriched ²⁸Si.

> A. N. Ramanayaka Joint Quantum Institute, National Institute of Standards and Technology

Date submitted: 06 Nov 2015

Electronic form version 1.4