Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Softness Correlations Across Length Scales1 ROBERT IVANCIC, University Of Pennsylvania, AMIT SHAVIT, Thomson Reuters, JENNIFER RIESER, SAMUEL SCHOENHOLZ, University Of Pennsylvania, EKIN CUBUK, Harvard, DOUGLAS DURIAN, ANDREA LIU, ROBERT RIGGLEMAN, University Of Pennsylvania — In disordered systems, it is believed that mechanical failure begins with localized particle rearrangements. Recently, a machine learning method has been introduced to identify how likely a particle is to rearrange given its local structural environment, quantified by softness. We calculate the softness of particles in simulations of atomic Lennard-Jones mixtures, molecular Lennard-Jones oligomers, colloidal systems and granular systems. In each case, we find that the length scale characterizing spatial correlations of softness is approximately a particle diameter. These results provide a rationale for why localized rearrangements—whose size is presumably set by the scale of softness correlations—might occur in disordered systems across many length scales.

1supported by DOE DE-FG02-05ER46199

Robert Ivancic
University Of Pennsylvania

Date submitted: 06 Nov 2015

Electronic form version 1.4