Probing the Surface Defect States of Gallium Nitride Nanowires
LAUREN SIMONSEN, YUCHEN YANG, Department of Physics and Astronomy, University of Utah, NICHOLAS BORYS, Molecular Foundry, Lawrence Berkeley National Laboratory, ANIL GHIMIRE, Department of Physics and Astronomy, University of Utah, JAMES SCHUCK, SHAUL ALONI, Molecular Foundry, Lawrence Berkeley National Laboratory, JORDAN GERTON, Department of Physics and Astronomy, University of Utah — In this work, we investigate gallium nitride nanowires (NWs) as a potential system for solar-driven water splitting. Although bulk GaN has a UV bandgap, the synthesized NWs exhibit strong absorption and fluorescence emission across the visible spectrum. Density functional theory calculations suggest that this visible fluorescence originates from mid-gap surface-defect states along the triangular facets of the NWs. The orientation of the NWs can be controlled during MOCVD growth, leading to different exposed crystallographic surface terminations with different electronic structures. High resolution microscopy techniques using AFM and confocal hyper-spectral imaging show spectral inhomogeneity across the widths of the NWs, providing evidence that various crystallographic terminations produce different surface states. These NWs also exhibit wave guiding properties, leading to Fabry-Perot fringes and high intensity spectra and the ends of the wires. Photoluminescence excitation spectroscopy reveals a non-linear dependence of the emission spectral features on excitation wavelength, indicating a complex distribution of mid-gap defect states. Time-resolved spectroscopy reveals non-exponential decay dynamics through a complicated manifold of mid-gap states.