Abstract Submitted for the MAR16 Meeting of The American Physical Society

Investigation of Low Temperature Non-Linear Magnetization Behavior in Al and Ga-Substituted La_{0.4}Bi_{0.6}Mno₃ Manganites. VIJAYLAK-SHMI DAYAL, PUNITH KUMAR V, Maharaja Institute of Technology-Mysore, RAVI HADIMANI, DAVID JILES, Iowa State University, DAVID C JILES TEAM, VIJAYLAKSHMI DAYAL COLLABORATION — Low temperature magnetization measurements have been carried out for the samples containing Al and Ga at B-site in La_{0.4}Bi_{0.6}MnO₃ manganites. The magnetization (M) vs. T(K) data shows strong ferromagnetic behavior with highest magnetization of 6.45 emu/g for $La_{0.4}Bi_{0.6}Mn_{0.95}Al_{0.05}O_3$ and 5.40 emu/g for $La_{0.4}Bi_{0.6}Mn_{0.90}Al_{0.1}O_3$ samples respectively for an applied magnetic field of H=100 Oe at T=20 K. Similarly at T=20 K for La_{0.4}Bi_{0.6}Mn_{0.95}Ga_{0.05}O₃ the highest magnetization (M_S) was found to be 5.44 emu/g and for $\text{La}_{0.4}\text{Bi}_{0.6}\text{Mn}_{0.90}\text{Ga}_{0.1}\text{O}_3$ the M_S is 5.05 emu/g. The decrease in magnetization with both Al and Ga substitution produces magnetic dilution with increasing concentrations. Both Al and Ga substituted samples exhibit non-linear behavior in their magnetization (M_{NL}) curves around 40-120 K due to the frustrations arising from mismatch in their magnetic spin arrangements. The quantity non linear susceptibility, $\chi_{\rm NL} = -M_{\rm NL}/H$, diverges as the temperature approaches the frustrated region T_f from above (i.e.T_C). Further from $d\chi_{NL}/dT$ vs. T(K) plots and critical analysis with unusual critical exponent's γ and β gives an experimental evidence for the observed non linearity and magnetic frustration.

> Ravi Hadimani Iowa State Univ

Date submitted: 25 Nov 2015 Electronic form version 1.4