Enhancement of the Co magnetic moment in bcc Co$_{1-x}$Mn$_x$ on MgO

RYAN SNOW, HARSH BHATKAR, Montana State University, ALPHA N’DIAYE, ELKE ARENHOLZ, Lawrence Berkeley National Laboratories, YVES IDZERDA, Montana State University, MONTANA STATE UNIVERSITY TEAM, LAWRENCE BERKELEY NATIONAL LABORATORIES TEAM — Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD), we show that the elemental Co moment for MBE grown thin films of bcc Co$_{1-x}$Mn$_x$ grown on MgO(001) is enhanced by 40% to a maximum value of 2.1 μ_B at $x=0.24$. The net Mn moment is found to align parallel with Co for all concentrations and remains roughly constant until $x=0.3$, then drops steadily, up to $x=0.7$, where the total moment of the film abruptly collapses to zero. Using a low-concentration Mn moment of 3.0 μ_B, the average magnetization lies directly on the Slater-Pauling (SP) curve for concentrations up to about $x=0.25$, where it reaches a maximum moment of 2.3 μ_B /atom. This peak is slightly shifted and the slope is steeper on the high-Mn concentration side of the peak relative to the standard SP curve. This is in stark contrast to the fcc CoMn and hcp CoCr bulk behavior which shows only a rapid total moment reduction with Mn concentration.

\footnote{This material is based upon work supported by the National Science Foundation under Grant ECCS-1542210. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Con}

Yves Idzerda
Montana State University

Date submitted: 06 Nov 2015

Electronic form version 1.4