Abstract Submitted for the MAR16 Meeting of The American Physical Society

Proximity superconductivity in graphene Landau levels GAURAV CHAUDHARY, Univ of Texas, Austin, XIAO LI, Univ of Maryland, College Park, ALLAN MACDONALD, Univ of Texas, Austin — We study monolayer graphene sheets in the quantum Hall regime that are proximity coupled to an *s*-wave superconducting thin film. At magnetic fields near H_{c2} triangular vortex lattice states form in the superconductor and induce similar vortex lattice states in the graphene sheets. We use the Bogoliubov-de Gennes theory to study the properties of quasiparticle excitations in the graphene sheets, and find that the quantized Hall conductance survives even in such a vortex lattice state. We further explore the possibility of realizing topological superconductivity in such a system. In addition, we propose that under some circumstances the vortex cores may host zero-energy bound states which are Majorana fermions.

Gaurav Chaudhary Univ of Texas, Austin

Date submitted: 06 Nov 2015

Electronic form version 1.4