Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Raman spectroscopy of exfoliated few-layered n-type Bi$_2$Te$_3$
FENGJIAO LIU, MEHMET KARAKAYA, POOJA PUNEET, Clemson Nanomate-
rials Center, Department of Physics and Astronomy, Clemson University, Clemson, SC USA 29634, RAMAKRISHNA PODILA, Laboratory of Nano-biophysics and COMSET, Clemson Nanomaterials Center, Dept. of Physics Astronomy, Clemson University, Clemson, SC USA 29634, SRIPARNA BHATTACHARYA, Clemson Nanomaterials Center, Department of Physics and Astronomy, Clemson University, Clemson, SC USA 29634, APPARAO M. RAO, Clemson Nanomaterials Center, Laboratory of Nano-biophysics and COMSET, Dept. of Physics and Astronomy, Clemson University, Clemson, SC USA 29634, CLEMSON NANOMATERIALS CENTER, DEPT. OF PHYSICS ASTRONOMY, CLEMSON UNIVERSITY, CLEMSON, SC 29634 COLLABORATION, LABORATORY OF NANO-
BIOPHYSICS AND COMSET, CLEMSON UNIVERSITY, CLEMSON, SC USA 29634 COLLABORATION — A novel chemical-exfoliation spark-plasma-sintering (CE-SPS) process was applied to enhance the thermoelectric figure of merit and compatibility factor of few-layered n-type Bi$_2$Te$_3$. New vibrational modes were ob-
served in the micro-Raman spectra of the few-layered Bi$_2$Te$_3$ samples, which are absent in the bulk. Here we focus on the emergence of the new intermediate and high-frequency Raman modes and their dependence on the layer thickness. A de-
tailed Raman study probing the origin of these exfoliation induced defect modes will be presented.

Ramakrishna Podila
Laboratory of Nano-biophysics and COMSET, Clemson Nanomaterials Center, Dept. of Physics Astronomy, Clemson University, Clemson, SC USA 29634

Date submitted: 02 Dec 2015