MAR16-2015-020038

Abstract for an Invited Paper for the MAR16 Meeting of the American Physical Society

Controlling and imaging chiral spin textures

GONG CHEN, Lawrence Berkeley National Laboratory

Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications [1,2,3]. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films [4,5]. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering [6] and by forming ternary superlattices [7]. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films [8]. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field [9]. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials. [1] A. Fert et al. *Nat. Nanotechnol.* 8, 152 (2013). [2] N. Nagaosa et al. *Nat. Nanotechnol.* 8, 899 (2013). [3] W. Jiang et al. *Science* **349**, 283 (2015). [4] G. Chen, et al. *Phys. Rev. Lett.* **110**, 177204 (2013). [5] G. Chen, et al. *Adv. Mater.* **27**, 5738 (2015). [6] G. Chen, et al. *Nat. Commun.* **4**, 2671 (2013). [7] G. Chen, et al. *Appl. Phys. Lett.* **106**, 062404 (2015). [8] G. Chen, et al. *Nat. Commun.* **6**, 6598 (2015). [9] G. Chen, et al. *Appl. Phys. Lett.* **106**, 242404 (2015).