Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Observation of an Even-odd Anisotropic Transport in High Landau Levels

GUANGTONG LIU, CHANGLI YANG, QIN WANG, YUYING ZHU, YUAN PANG, JIE FAN, XIUNIAN JING, ZHONGQING JI, LI LU, Institute of Physics, Chinese Academy of Sciences, RUI-RUI DU, International Center for Quantum Materials, Peking University, Beijing 100871, China, LOREN PFEIFFER, KEN WEST, Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA, INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES TEAM, INTERNATIONAL CENTER FOR QUANTUM MATERIALS, PEKING UNIVERSITY, BEIJING 100871, CHINA COLLABORATION, DEPARTMENT OF ELECTRICAL ENGINEERING, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544, USA COLLABORATION — Magnetotransport experiments (including tilt fields) were performed on ultrahigh mobility L-shaped Hall-bar samples of GaAs/AlGaAs quantum wells. The low-temperature longitudinal resistance R_{xx} data demonstrate that a striking even-odd anisotropic transport exists only along the [110] direction at half filling in $N \geq 2$ high Landau levels. Although the origin for the peculiar even-odd anisotropy remains unclear, we propose that the coupling strength between electrons within the same Landau level and between the neighboring two Landau levels should be considered in future studies. The tilt field data show that the in-plane field can suppress the formation of both bubble and stripe phases.

$1^\text{The work at IOP was supported by the National Basic Research Program of China under the grant No.2014CB920904 and 2011CB921702. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420}$

Guangtong Liu
Institute of Physics, Chinese Academy of Sciences

Date submitted: 01 Dec 2015
Electronic form version 1.4