Molecular Origins of Higher Harmonics in Large-Amplitude Oscillatory Shear Flow: Shear Stress Response

PETER GILBERT, A. JEFFREY GIACOMIN, Chemical Engineering Department, Queen’s University, ANDREW SCHMALZER, Chemical Diagnostics and Engineering, Los Alamos National Laboratory, R. B. BIRD, Chemical Engineering Department, University of Wisconsin - Madison

Recent work has focused on understanding the molecular origins of higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. These higher harmonics have been explained using only the orientation distribution of a dilute suspension of rigid dumbbells in a Newtonian fluid, which neglects molecular interactions and is the simplest relevant molecular model of polymer viscoelasticity [R.B. Bird et al., *J Chem Phys*, 140, 074904 (2014)]. We explore these molecular interactions by examining the Curtiss-Bird model, a kinetic molecular theory that accounts for restricted polymer motions arising when chains are concentrated [Fan and Bird, *JNNFM*, 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ϵ, for which several special cases arise: $\epsilon = 0$ corresponds to reptation, $\epsilon > 1/8$ to rod-climbing, $1/2 \geq \epsilon \geq 3/4$ to reasonable shear-thinning predictions in steady simple shear flow, and $\epsilon = 1$ to a dilute solution of chains. We examine the shapes of the shear stress versus shear rate loops for the special cases, $\epsilon = (0, 1/8, 3/8, 1)$, of the Curtiss-Bird model, and we compare these with those of rigid dumbbell and reptation model predictions.