Novel spintronics devices for memory and logic: prospects and challenges for room temperature all spin computing,
JIAN-PING WANG, Electrical and Computer Engineering Dept., Univ of Minnesota

An energy efficient memory and logic device for the post-CMOS era has been the goal of a variety of research fields. The limits of scaling, which we expect to reach by the year 2025, demand that future advances in computational power will not be realized from ever-shrinking device sizes, but rather by innovative designs and new materials and physics. Magnetoresistive based devices have been a promising candidate for future integrated magnetic computation because of its unique non-volatility and functionalities. The application of perpendicular magnetic anisotropy for potential STT-RAM application was demonstrated and later has been intensively investigated by both academia and industry groups, but there is no clear path way how scaling will eventually work for both memory and logic applications. One of main reasons is that there is no demonstrated material stack candidate that could lead to a scaling scheme down to sub 10 nm. Another challenge for the usage of magnetoresistive based devices for logic application is its available switching speed and writing energy. Although a good progress has been made to demonstrate the fast switching of a thermally stable magnetic tunnel junction (MTJ) down to 165 ps, it is still several times slower than its CMOS counterpart. In this talk, I will review the recent progress by my research group and my C-SPIN colleagues, then discuss the opportunities, challenges and some potential path ways for magnetoresitive based devices for memory and logic applications and their integration for room temperature all spin computing system.