Abstract Submitted for the MAR16 Meeting of The American Physical Society

On the magnetic structure and band gap of the double perovskite Ba2CuOsO6: Density functional analysis¹ CHANGHOON LEE, JISOOK HONG, JI HOON SHIM, Pohang University of Science and Technology, MYUNG-HWAN WHANGBO, North Carolina State University — The ordered double-perovskite Ba₂CuOsO₆, consisting of 3d and 5d transition-metal magnetic ions (Cu²⁺ and Os⁶⁺, respectively), is a magnetic insulator. It obeys the Curie-Weiss law with θ = -13.3 K. We evaluated the spin exchange interactions of Ba₂CuOsO₆ by performing energy-mapping analysis based on DFT+U calculations and determined the band gap of Ba₂CuOsO₆ by DFT+U and DFT+U+SOC calculations. The antiferromagnetic ordering of Ba₂CuOsO₆ is due largely to the spin exchange interactions between Cu2+ ions, which are enhanced by the empty eg orbitals of the intervening Os⁶⁺ ions. Both electron correlation and spin-orbit coupling are necessary to open a band gap for Ba₂CuOsO₆.

¹2013R1A1A2060341

Changhoon Lee Pohang University of Science and Technology

Date submitted: 05 Nov 2015

Electronic form version 1.4