Abstract Submitted for the MAR16 Meeting of The American Physical Society

Observation of Superconductivity by Sr Intercalation in Topological Insulator Bi₂Se₃ SHRUTI SHRUTI, VISHAL MAURYA, PRAKRITI NEHA, SUDESH SUDESH, SATYABRATA PATNAIK, Jawahar lal Nehru University, New Delhi, India — Bi₂Se₃ is a well-known 3D topological insulator. Here we show that Sr intercalation into the van der Waal gaps of Bi₂Se₃ induces superconductivity with a maximum T_c of 2.9 K. The single crystals of Sr_xBi₂Se₃ for x= 0 to 0.2 were prepared by self-flux method. The optimally doped sample Sr_{0.1}Bi₂Se₃ shows a large superconducting shielding fraction of 93% with T_{c-onset} of 2.94 K. Using transport measurement, the anisotropy in Sr_{0.1}Bi₂Se₃ is found to be $\Gamma = 1.5$ with an upper critical field H_{c2}(0) equal to 2.1 T for magnetic field applied along the *ab* plane of the sample. Along *ab* plane of the sample, the lower critical field H_{c1,ab}(0) is estimated to be 0.39 0.02 mT. Hall and Seebeck measurements shows electroninc carrier concentration of $n = 1.85 \, 10^{19} \, \text{cm}^{-3}$ at 10 K. Such low carrier concentration indicates the possibility of unconventional pairing state.

> Vishal Maurya Jawahar lal Nehru University, New Delhi, India

Date submitted: 06 Jan 2016

Electronic form version 1.4