Surface conductance and one-dimensional edge state transport in topological Kondo insulator SmB$_6$1

JOHNPIERRE PAGLIONE, University of Maryland

The Kondo insulator compound SmB$_6$, with hybridization between itinerant conduction electrons and localized f-electrons driving an insulating gap and metallic surface states at low temperatures, is an ideal candidate for realizing the topological Kondo insulator state. By exploiting the presence of a time reversal symmetry breaking surface ferromagnetic state, we investigate the topological nature of metallic surface states, finding evidence of one-dimensional surface transport with conductance values approaching the quantized value of e^2/h and originating from the chiral edge channels of ferromagnetic domain walls. We will review our milliKelvin magnetotransport measurements of the edge state transport phenomenon in SmB$_6$, as well as thickness and surface gating studies that conclusively prove the surface nature of low temperature conductance.

1This research was supported by AFOSR (FA9550-14-1-0332) and NSF (DMR-0952716).