Abstract Submitted for the MAR16 Meeting of The American Physical Society

Charge transport in the organic doped spin-liquid candidate, κ -(ET)₄Hg_{2.89}Br₈, under Pressure YUJI SUZUKI, JUN IBUKA, University of Tokyo, HIROSHI OIKE, RIKEN, KAZUYA MIYAGAWA, University of Tokyo, HIROMI TANIGUCHI, Saitama University, KAZUSHI KANODA, University of Tokyo — The family of layered organic conductors κ -(ET)₂X plays an important role in the study of Mott physics, which is a major subject in the condensed matter physics. While most κ -(ET)₂X compounds have half-filled bands and antiferromagnetic nature, the title compound κ -(ET)₄Hg_{2.89}Br₈ (κ -HgBr) is an exceptional doped system which is supposed to be the only doped spin-liquid candidate up to the present. The transport study under controlled pressure, which enables us to investigate this intriguing system with tuning the correlation strengths, revealed that κ -HgBr shows a transition or crossover from a non-Fermi liquid to a Fermi-liquid as pressure increases.^{1,2} In the present work, we have carried out the detailed transport measurement under pressure for κ -HgBr with static magnetic fields applied normal to the conducting layers. I will discuss the in-plane and out-of-plane charge transport in normal and superconducting states in this doped spin-liquid candidate with variable electron correlation.

¹H. Taniguchi *et al.*, J. Phys. Soc. Jpn. **76**, 113709 (2007). ²H. Oike *et al.*, Phys. Rev. Lett. **114**, 067002 (2015).

> Yuji Suzuki University of Tokyo

Date submitted: 06 Jan 2016

Electronic form version 1.4