Abstract Submitted for the MAR16 Meeting of The American Physical Society

Superconductive density-of-states (DOS) depletion effect manifested in interlayer magnetotransport of overdoped Bi-2212¹ TOMOHIRO USUI, SHINTARO ADACHI, YUKI TERAMOTO, Hirosaki Univ., ITSUHIRO KAKEYA, Kyoto Univ., AKIHIRO KONDO, KOICHI KINDO, ISSP, Univ. of Tokyo, SHOJIRO KIMURA, Tohoku Univ., TAKAO WATANABE, Hirosaki Univ. — To determine the mechanism of high superconducting transition temperature (high- T_c) superconductivity, we must understand the relationship between the pseudogap (PG) and superconductivity. For this purpose, we measure the out-of-plane resistivity $\rho_c(T, H)$ of an overdoped Bi_{1.6}Pb_{0.4}Sr₂CaCu_{1.96}Fe_{0.04}O_{8+ δ} (Bi-2212) single crystal under pulsed magnetic fields up to 60 T. Above T_c , magnetoconductivity (MC) is due to two positive components: one component rapidly increases with increasing fields but saturates at higher fields, and the other component gradually increases as H^2 . The former decreases with increasing temperature and vanishes around the onset temperature of superconductive fluctuation T_{scf} . Thus, it is attributed to the superconductive DOS depletion effect. The latter is present both below and above T_{scf} . Thus, it is attributed to the PG effect. Subsequent analysis below T_c shows that the peak structure for $\rho_c(T, H)$ is primarily due to the superconductive DOS depletion effect. This result supports the scenario that the PG results in high- T_c superconductivity.

¹Hirosaki University Grant for Exploratory Research by Young Scientists and Newlyappointed Scientists

> Tomohiro Usui Graduate School of Science and Technology, Hirosaki University, Japan

Date submitted: 07 Jan 2016

Electronic form version 1.4