Abstract Submitted for the MAR16 Meeting of The American Physical Society

of Investigation Local Structure and Cation Ordering in Dielectric Oxide Microwave Ceramics with stoichiometry A(Li_x(Nb,Ta)_v)O₃ Using ⁷Li and ⁹³Nb solid-state NMR spectroscopy. RONY KALFARISI, NMR Spectroscopy Group, Physics Department, College of William and Mary — The local structure and cation ordering in dielectric oxide microwave ceramics with stoichiometry A(Li_x(Nb,Ta)_y)O₃ are investigated using ⁷Li and ⁹³Nb solid-state NMR spectroscopy. For all samples, ⁷Li MAS NMR spectra show one strong and sharp resonance peak indicating one unique environment which corresponds to local lithium environment of nearest B-site neighbor (nBn) surrounded by 4 LiO₆ octahedra and 2 NbO₆ octahedra (TaO₆ in some samples). In addition to this, ⁷Li MAS NMR spectrum of (Ca_{2/3}La_{1/3})(Li_{1/3}Nb_{2/3})O₃ show one additional weak and broad resonance peak which can be assigned to nBn of 3 LiO₆ octahedra and 3 NbO₆ octahedra. ⁹³Nb MAS NMR spectra of samples with niobium content, show a resonance peak with tail toward the low frequency limit, an evidence to the existence of chemical shifts and quadrupole couplings distributions. Both $(Sr_{2/3}La_{1/3})(Li_{1/3}Nb_{2/3})O_3$ and $Ca(Li_{1/4}Nb_{3/4})O_3$ spectra show one broad resonance peak, which can be interpreted as one NbO₆ octahedron nBn with many slight variations through out the sample. While (Ca_{2/3}La_{1/3})(Li_{1/3}Nb_{2/3})O₃ spectra show four peaks correspond to four distinct NbO₆ octahedra local nBn environments with the nBn configuration as: (i) 3 LiO₆ and 3 NbO₆; (ii) 2 LiO₆ and 4 NbO_6 ; (iii) 1 LiO_6 and 5 NbO_6 ; (iv) all 6 NbO_6

Rony Kalfarisi NMR Spectroscopy Group, Physics Department, College of William and Mary

Date submitted: 19 Jan 2016 Electronic form version 1.4