5-fold increase of hydrogen uptake in MOF74 through linker decorations

T. THONHAUSER, S. ZULUAGA, D. HARRISON, E. WELCH-MAN, C. ARTER, Wake Forest University — We present *ab initio* results for linker decorations in Mg-MOF74—i.e. attaching various metals $\mathcal{M} = \text{Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt}$ near the ring of the linker—creating new strong adsorption sites and thus maximizing small molecule uptake.\(^1\) We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening we chose metals that bind favorably to the linker and further investigate adsorption of $\text{H}_2$, $\text{CO}_2$, and $\text{H}_2\text{O}$ for $\mathcal{M} = \text{Li, Na, K, and Sc}$. For the case of $\text{H}_2$ we show that up to 24 additional guest molecules can be adsorbed in the MOF unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a 5-fold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular—where the gravimetric hydrogen density increases from 1.63 mass\% to 7.28 mass\% and the volumetric density from 15.10 g $\text{H}_2$ L$^{-1}$ to 75.50 g $\text{H}_2$ L$^{-1}$.

\(^1\)This work was supported by NSF Grant No. DMR–1145968.

Timo Thonhauser
Wake Forest University

Date submitted: 22 Oct 2016
Electronic form version 1.4