Abstract Submitted
for the MAR17 Meeting of
The American Physical Society

Magnetic excitations of the spin dimer system PHCC under pressure as seen by Raman scattering

SIMON BETTLER, GEDIMINAS SIMUTIS, GERARD PERREN, Neutron Scattering and Magnetism Group, DAN HUVONEN, National Institute of Chemical Physics and Biophysics, SEVERIAN GVASALIYA, ANDREY ZHELUDEV, Neutron Scattering and Magnetism Group — The model spin-1/2 dimer system \((C_4H_{12}N_2)Cu_2Cl_6\) (aka PHCC) has recently been shown to undergo a phase transition to a magnetically ordered state upon applying hydrostatic pressure in both muon spin rotation(\(\mu^+\)SR) and inelastic neutron scattering(INS) experiments. In the \(\mu^+\)SR experiments a second phase transition from incommensurate to commensurate order was detected at 14 kbar. By contrast, the INS experiments found hardly any difference in the spin dynamics at 9 kbar and 18 kbar. To resolve this discrepancy, we performed Raman scattering experiments on single crystals to study the pressure-dependence of both magnetic and lattice excitations from ambient pressure up to 18 kbar. The three regimes found in \(\mu^+\)SR could be reproduced. Each regime could be associated with a characteristic peak shape of the magnetic scattering. Increasing pressure leads to a shifting of the magnetic excitations to lower energies up to a pressure of 15 kbar, where the magnetic peak mode reaches a minimum. Increasing pressure further leads to the magnetic excitations' energy increasing again. Moreover, no indication of a structural phase transition could be found. We conclude that the evolution of spin dynamics in the ordered phase is far more intriguing than expected from INS.

\(\text{1This work was supported by the Swiss National Science Foundation, Division 2}\)

Simon Bettler
Neutron Scattering and Magnetism Group

Date submitted: 13 Nov 2016
Electronic form version 1.4