Electrical and Photoconductivity study on few layers ReSe$_2$1 NIHAR PRADHAN, CARLOS GARCIA, Natl High Magnetic Field Lab, Tallahassee, FL, USA, BRIDGET ISENBERG, Natl High Magnetic Field Lab, Tallahassee, FL, USA and Lincoln high school, Tallahassee, FL, USA, DANIEL RHODES, SHAHRIAR MEMARAN, JOSHUA HOLLEMAN, STEPHEN MCGILL, LUIS BALICAS, Natl High Magnetic Field Lab, Tallahassee, FL, USA — Transition metal dichalcogenides (TMDs) have emerged as attractive materials for electronic and optoelectronic device applications due to their tunable band gap as a function of layers and easier to produce single atomic layer form, which could be potential pathways beyond CMOS technologies. Among the TMDs semiconductors, extensive research has been conducted on few compounds such as MoS$_2$, WS$_2$, and WSe$_2$ focusing on electrical and optical properties of single-to-few atomic layers. These compounds show direct band gap transition when exfoliated to single layer from bulk crystals. However, there are other layered materials such as ReS$_2$, ReSe$_2$, InSe, etc. are recently reported displays direct band gap irrespective to the number of layers, makes promising application in optoelectronics. Here, we present an intrinsic electrical and photoconductivity study on less studied ReSe$_2$ compound, mechanically exfoliated on to the Si/SiO$_2$ substrate. The field-effect mobility at room temperature of few-layered ReSe$_2$ device is \sim10cm2/Vs. Hopefully we will also present the detail electrical transport properties of ReSe$_2$ field-effect transistors as a function of temperature.

1We acknowledge US Army Research Office through the MURI grant W911NF-11-10362. NHMFL is supported by NSF

\begin{flushright}
Nihar Pradhan
Natl High Magnetic Field Lab
\end{flushright}

Date submitted: 28 Oct 2016 Electronic form version 1.4