Abstract Submitted
for the MAR17 Meeting of
The American Physical Society

Universal Lower Limit on Vortex Creep in Superconductors SERENA ELEY, Los Alamos National Laboratory, MASASHI MIURA, Seikei University, BORIS MAIOROV, LEONARDO CIVALE, Los Alamos National Laboratory — In high-temperature superconductors, creep (the rate of thermally-activated vortex motion, \(S \)) considerably limits the current carrying capacity. The magnitude of \(S \) is thought to somehow positively correlate with the Ginzburg number (\(Gi \)), which depends on the critical temperature (\(T_c \)) and material-specific length scales. Early measurements of \(S \) in iron-based superconductors unveiled rates comparable to YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\), which was puzzling given that \(Gi \) is orders of magnitude lower in iron-based superconductors. Here, we report very slow creep in BaFe\(_2\)(As\(_{0.67}\)P\(_{0.33}\))\(_2\) films and evince the efficacy of BaZrO\(_3\) inclusions in reducing \(S \) at high fields. We propose that there is a universal minimum realizable \(S \sim Gi^{2/3}(\frac{T}{T_c}) \), and show that it has been achieved in our films, a few other superconductors, and violated by none. This hard constraint has two broad implications: first, the creep problem in high-\(T_c \) superconductors cannot be fully eliminated and there is a limit to how much it can be ameliorated, and secondly, we can confidently predict that any yet-to-be-discovered high-\(T_c \) superconductor will have fast creep.

Serena Eley
Los Alamos National Laboratory

Date submitted: 28 Oct 2016

Electronic form version 1.4