Abstract Submitted for the MAR17 Meeting of The American Physical Society

Observation of a macroscopic topological insulator phase in an assembly of coupled topological insulator nanocrystals¹ DIPTIMAN SEN, ABHISHEK BANERJEE, OINDRILA DEB, KUNJALATA MAJHI, R GANESAN, P. S. ANIL KUMAR, Indian Institute of Science, Bangalore — We study an assembly of tunnel coupled topological insulator (TI) nanocrystals. We demonstrate experimentally that a macroscopic topological insulator phase can emerge in this system. Electrical transport measurements on thin films of Bi₂Se₃ nanocrystals reveal the presence of decoupled top and bottom topological surface states above a certain film thickness. The surface state penetration depth is found to be unusually large, \sim 30nm at 2K, and decreases with increasing temperature. For samples with low film thickness, we observe deviations of the surface state Berry phase from π due to hybridization of opposite surface states. This weakens the effective spin-orbit coupling field to as low as ~ 30 T at 2K. Remarkably, the topological insulating behavior becomes more pronounced with increasing temperature. Our work exhibits a model TI that is distinct from bulk/single crystal TIs and also displays phenomena that are expected, but normally not accessible in the latter systems.

¹K.M. thanks CSIR, India for financial support. D.S. thanks DST, India for support under Grant No. SR/S2/JCB-44/2010. P.S.A.K. acknowledges Nanomission, DST, Govt. of India for support.

Diptiman Sen Indian Institute of Science, Bangalore

Date submitted: 31 Oct 2016 Electronic form version 1.4