Abstract Submitted
for the MAR17 Meeting of
The American Physical Society

Non-integral-spin bosonic excitations in untextured magnets

AKASHDEEP KAMRA, Department of Physics, University of Konstanz, D-78457 Konstanz, Germany, UTKARSH AGRAWAL, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India, WOLFGANG BELZIG, Department of Physics, University of Konstanz, D-78457 Konstanz, Germany — Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interactions lead to bosonic eigen-excitations with spin ranging from zero to above \hbar in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin $\pm \hbar$ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The spin greater than \hbar is accompanied by vacuum fluctuations and may be considered a weak form of frustration.

1We acknowledge financial support from the Alexander von Humboldt Foundation and the DFG through SFB 767.

Akashdeep Kamra
Department of Physics, University of Konstanz, Germany

Date submitted: 31 Oct 2016

Electronic form version 1.4