Abnormal behaviors in galvanically displaced Au nanostructure on silicon below and above percolation threshold a coverage of Au nanostructure.1 SEUNG-HOON LEE, Department of Physics, Pukyong National University, SEONGPIL HWANG, Department of Advanced Materials Chemistry, Korea University, JUNG HYUN JEONG, JAE-WON JANG2, Department of Physics, Pukyong National University — Temperature dependent resistivity of galvanically displaced Au nanostructure (NS) on p-type Silicon (p-Si) was investigated by tuning a coverage of Au NS below and above a percolation threshold (p_c) in temperature range of 10-300K. Below p_c [Au nanoparticles are deposited on p-Si], the temperature coefficient of resistivity (TCR) and cryogenic sensitivity (S_v) of p-Si in the low-temperature region (10–30 K) are remarkably improved upto 35\% of TCR and 5785\% of S_v in Au coverage of 21.9\% compared to p-Si. Above p_c [Au nanofeatures (NFs) are deposited on p-Si], the resistivity of the Au NFs on p-Si show metal to semiconductor transition (MST) as the temperature increases and the temperature of the MST is tuned from 145 to 232 K as Au\% is changed from 82.7 to 54.3\%. Our investigation can propose a new optoelectronic application by galvanic displacement method and can provide the better understanding for effect of metal NS on doped semiconductor in the galvanic displacement method.

1This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A1A1A05027681 and NRF-2016K1A3A1A32913212).

2Corresponding author

Seung-Hoon Lee
Department of Physics, Pukyong National University