Abstract Submitted for the MAR17 Meeting of The American Physical Society

Stability and magnetism in FeC₂ monolayer TIANSHAN ZHAO, Peking University, JIAN ZHOU, Department of Physics, Virginia Commonwealth University, QIAN WANG, Center for Applied Physics and Technology, Peking University, YOSHIYUKI KAWAZOE, New Industry Creation Hatchery Center, Tohoku University, PURU JENA, Department of Physics, Virginia Commonwealth University — We report a new FeC₂ sheet containing C₂ dimers, which can be chemically exfoliated from bulk ThFeC₂ phase. Using density functional theory combined with AIMD and phonon dispersion calculation, we found that upon exfoliation from bulk ThFeC₂, the FeC₂ sheet changes its symmetry from Amm2 to Pmmn, while retaining its robust dynamical, thermal and mechanical stability. In sharp contrast to the metallic and paramagnetic bulk phase of ThFeC₂ and the recently reported TiC₂ sheet, the exfoliated FeC₂ sheet is half-metallic and ferromagnetic with a Curietemperature of 245 K, making it a promising candidate for spintroinc applications.

> Qian Wang Peking University

Date submitted: 27 Jan 2017

Electronic form version 1.4