Spin resonance peak in Fe-based superconductors with unequal gaps\footnote{We acknowledge partial support by RFBR (grant 16-02-00098), and Government Support of the Leading Scientific Schools of the Russian Federation (NSh-7559.2016.2).} \hspace{1em} MAXIM KORSHUNOV, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, VADIM SHESTAKOV, YULIYA TOGUSHOVA, Siberian Federal University — We study the spin resonance in superconducting state of iron-based materials \cite{1} within multiband models with two unequal gaps, Δ_L and Δ_S, on different Fermi surface pockets \cite{2}. We show that due to the indirect nature of the gap entering the spin susceptibility at the nesting wave vector the total gap $\tilde{\Delta}$ in the bare susceptibility is determined by the sum of gaps on two different Fermi surface sheets connected by ϵ. For the Fermi surface geometry characteristic to the most of iron pnictides and chalcogenides, the indirect gap is either $\tilde{\Delta} = \Delta_L + \Delta_S$ or $\tilde{\Delta} = 2\Delta_L$. In the s_{++} state, spin excitations below $\tilde{\Delta}$ are absent unless additional scattering mechanisms are assumed. The spin resonance appears in the s_{\pm} superconducting state at frequency $\omega_R \leq \tilde{\Delta}$. Comparison with available inelastic neutron scattering data confirms that what is seen is the true spin resonance and not a peak inherent to the s_{++} state \cite{3}. References: \cite{1} P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011); \cite{2} M.M. Korshunov, V.A. Shestakov, Yu.N. Togushova, Phys. Rev. B 94, 094517 (2016); \cite{3} H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).