Abstract Submitted for the MAR17 Meeting of The American Physical Society

Structural and magnetic properties of the $5d^2$ double perovskites Sr₂BReO₆ (B = Y, In) A.A. ACZEL, Z. ZHAO, Oak Ridge National Laboratory, D.T. ADROJA, Rutherford Appleton Laboratory, S. CALDER, Oak Ridge National Laboratory, P.J. BAKER, Rutherford Appleton Laboratory, J.-Q. YAN, Oak Ridge National Laboratory — We have performed magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation experiments to investigate the magnetic ground states of the $5d^2$ double perovskites Sr₂YReO₆ and Sr₂InReO₆. We find that Sr₂YReO₆ is a spin glass, while Sr₂InReO₆ hosts a non-magnetic singlet state. By making detailed comparisons with other $5d^2$ double perovskites, we argue that a delicate interplay between spin-orbit coupling, non-cubic crystal fields, and exchange interactions plays a key role in the great variation of magnetic ground states observed for this family of materials.

> Adam Aczel Oak Ridge National Lab

Date submitted: 03 Nov 2016

Electronic form version 1.4