Infrared Nano-imaging and nano-spectroscopy of phase transition in Ca$_2$RuO$_4$ JIAWEI ZHANG, State Univ of NY- Stony Brook, HANS BECHTEL, Advanced Light Source, Lawrence Berkeley National Laboratory, THOMAS CIAVATTI, XINZHONG CHEN, STEPHANIE CORDER, ZIHENG YAO, State Univ of NY- Stony Brook, MEIGAN ARONSON, Texas A& M University, MICHAEL MARTIN, Advanced Light Source, Lawrence Berkeley National Laboratory, CHANCHAL SOW, Kyoto University, FUMIHIKO NAKAMURA, Kurume Institute of Technology, YOSHITERU MAENO, Kyoto University, MENGKUN LIU, State Univ of NY- Stony Brook — We investigated the electric-field-induced insulator-to-metal transition (IMT) in bulk single crystal Ca$_2$RuO$_4$. Ca$_2$RuO$_4$ is a 4d electron transition metal oxide which has an IMT above 358 K. By applying a DC voltage above the threshold of 40 V/cm, a discontinuous conductivity jump can be readily observed with a dramatic change of electron and phonon signatures at the infrared frequency range. With infrared nano-imaging and nano-spectroscopy enabled by the scattering-type scanning near-field microscope (s-SNOM) techniques, this phase transition and the propagation of insulator-metal phase boundary are revealed with 10 nm resolution. We will discuss different stages of the phase transition and the nano-textures observed during the experiment.

Jiawei Zhang
State Univ of NY- Stony Brook

Date submitted: 13 Apr 2017

Electronic form version 1.4