MAR17-2016-001021

Abstract for an Invited Paper for the MAR17 Meeting of the American Physical Society

Topological Weyl Semimetal Materials: Charge and Spin Transport in the Bulk BINGHAI YAN, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

Thus far Weyl semimetals have been discovered in many materials such as TaAs (type-I) and MoTe2 (type-II). In this talk, I will first introduce themagneto-transport properties of TaAs- and MoTe2-type Weyl materials, where large magnetoresistance with strong quantum oscillations commonly exists [1,2]. We have reconstructed the 3D bulk Fermi surfaces from the quantum oscillations and band structure calculations [3,4,5], so that their magneto-transport behaviour can be furtherunderstood. Based on the band structure of Weyl materials, I will demonstrate the large spin Hall effect in both type-I and type-II Weyl semimetals [6]. The spin Hall effect, which can convert the charge current to spin current efficiently, not only paves a way for the application in spintronics, but also indicates a new guideline to design Weyl and Dirac semimetals from the pool of spintronic materials [7]. References: [1] Nature Phys. 11, 645 (2015).[2] Nature Comm. 7, 11038 (2016). [3] Phys. Rev. B 93, 121105 (2016). (2016). [4] Phys. Rev. Lett. 117, 146401 (2016). [5] Nature Comm. 7, 11615 (2016). [6] Phys. Rev. Lett. 117, 146403 (2016). [7] arXiv:1608.03404 (2016).